*Measure DC
Current*
CIRCUIT
DMM_ADC_MEAS1.CIR
Download the
SPICE file
Digital Multi-Meters (DMMs) don't measure current directly. The idea is to
insert an accurately known resistance R in series with the circuit to create a
voltage proportional the current flow. Then the current can be calculated as
I = V / R. This demands two competing
features for the Current Sense Resistor:
1. A __resistance big enough__ to get a decent size voltage
level.
2. A __resistance small enough__ to avoid significantly effecting
the circuit's operation.
The Current Sense Resistors are also called Current Shunts. In early
automobile measurements, low value resistors actually "shunted" most of the
current away from analog style meters, leaving a small portion of current to
drive the galvanic meter movement. Today many shunts carry all of the
current, creating a voltage to be measured directly.
CURRENT SENSE RESISTOR
Similar to Decade Resistor Divider for voltage measure, the Current Sense
Networks is a resistor string requiring a high level of functionality and
performance.
**1. Accurately create a
voltage from the current flowing through it.
**
**2. Present a LOW impedance
to have a minimal effect on the circuit being measured.**
**3. Maintain a
stable resistance with minimal change with temperature.**
How does the network function? Notice the strategic placement of the switches! The problem
lies in the resistance of the switches (R_SW) which could create a significant
voltage. This voltage could potentially add to the measurement. The trick here is arrange the
switches such that their resistance is not included in the voltage measurement.
One clever solution is shown above. Let's see how it works.
For the 200uA range, only SW1 is closed. This routes the current directly
to the top of sense resistor RS1. The current flows through all resistors RS1-4 for a
total of .
RS = 900 + 90 + 9 + 1
= 1k
The measured voltage at V(61) is easily calculated as
Vm = RS
· Im
= 1k · 200uA
= 200 mV
For the 200mA range, only SW4 is closed and all of the current flows
through RSH4 only for a resistance of .
RS = 1 ohm
Again, the measured voltage at V(64) is calculated as
Vm = RS
· Im
= 1 · 200mA
= 200 mV
NOTE!
You may have observed that in the 200 mA case, resistors RS1
through RS3 remain is series with the voltage measure point at V(61). This
creates a voltage divider with RIN of the voltmeter. No problem, __with RIN =
10 Meg, the voltage divider effect is insignificant__!
Also note, how __switch resistances R_SW0 through R_SW4 (and their
associated voltage drops) are not included with the actual voltage measurement at V(61)__.
The voltage created is related to the current sense resistors only!
RESISTOR NETWORK
If you're got a bigger budget for more accuracy, current shunts come manufactured in a single package.
What are the benefits? These resistors are trimmed for accuracy and
manufactured from materials to minimize the resistance change with temperature.
CURRENT MEASURE IN ACTION
Current source Im generates the current to be measured. Resistors RS1-4 form the
current shunts. Switches R_SW1-4 route the input current to the appropriate
shunts. These switches have all been set to OPEN (or 1e12 ohms).
Finally, RIN represents the input resistance of the volt meter.
CIRCUIT INSIGHT
Choose the 200uA current scale by setting R_SW1 to 1E-1 ohms. Set
Im to this 0.0002A. Run a TRANSIENT RESPONSE simulation and plot the
measured voltage at V(61). Does the voltage reach 200mV for the 200uA input
current?
Now change Im progressively from 200uA to 200mA in factors of 10. For
each magnitude, CLOSE the appropriate switch by setting its resistance to
1E-1 and OPEN all others with a resistance of 1E12.
Rerun the TRANSIENT ANALYSIS for each magnitude of current. Does the voltage at V(61) reach 200mV max?
On the 200mA range, set R_SW4 to something large like 0.5 ohms. This is
more than half of the sense resistor value! Did it have any effect on the measurement at V(61)?
DMM SERIES
Measure DC Volts with a
Decade Resistor Resistor Network.
Measure DC Current with a Decade Current
Sense Resistor Network.
Discover the heart of most DMM's - the
Dual-Slope Integrator.
SPICE FILE
Download the file
or copy this netlist into a text file with the *.cir
extension.
DMM_ADC_MEAS1.CIR
*
* INPUT VOLTAGE
IIN 0 60 0.0002A
*
* CURRENT SENSE RESISTORS
RS1 61 62 900
RS2 62 63 90
RS3 63 64 9
RS4 64 0 1
*
* SELECTOR SWITCHES
RSW_1 60 61 1e-2
RSW_2 60 62 1e12
RSW_3 60 63 1e12
RSW_4 60 64 1e12
*
* ANALYSIS *************************************************
.TRAN 25US 1MS
.PROBE
.END
Top ↑
© 2013 eCircuit Center |